Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (8): 25-32.doi: 10.3969/j.issn.2097-0706.2022.08.002
• Cell System with Oxygen-Ion Conducting Electrolyte • Previous Articles Next Articles
LUO Liqi1(), WANG Yue2(
), ZHONG Haijun2,*(
), LI Qingxun2(
), XIE Guangyuan1(
), WANG Shaorong1,*(
)
Received:
2022-06-06
Revised:
2022-08-10
Published:
2022-08-25
Contact:
ZHONG Haijun,WANG Shaorong
E-mail:ts20040107a31@cumt.cn;wangyue010@petrochina.com.cn;zhonghaijun@petrochina.com.cn;liqingxun@petrochina.com.cn;xgywl@163.com;srwang@cumt.edu.cn
CLC Number:
LUO Liqi, WANG Yue, ZHONG Haijun, LI Qingxun, XIE Guangyuan, WANG Shaorong. Design of the CHP system integrated with SOFC[J]. Integrated Intelligent Energy, 2022, 44(8): 25-32.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.08.002
Table 1
Input parameters
输入参数 | 数值 |
---|---|
空气摩尔流量/(mol·min-1) | 4.490 |
重整水蒸气摩尔流量/(mol·min-1) | 0.358 |
氧气摩尔流量/(mol·min-1) | 0.169 |
甲烷摩尔流量/(mol·min-1) | 0.143 |
纯水摩尔流量/(mol·min-1) | 0.810 |
自来水体积流量/(L·min-1) | 6 |
所需功率/kW | 1 |
水碳摩尔比 | 2.5 |
空气过量系数 | 5 |
重整器重整比率 | 0.9 |
SOFC燃料利用率/% | 70 |
燃烧器燃料利用率/% | 100 |
电池入口温度/℃ | 700 |
燃料进气温度/℃ | 25 |
纯氧进气温度/℃ | 25 |
纯水进料温度/℃ | 25 |
自来水进料温度/℃ | 25 |
Table 4
Thermodynamic parameters of the flow strands in the SOFC-CHP system
流股序号 | 温度/ ℃ | 摩尔焓/(kJ·mol-1) | 摩尔熵/ [kJ·(mol·K)-1] | 焓流量/kW | 摩尔流量/ (mol·min-1) |
---|---|---|---|---|---|
1 | 25.000 | -74.540 | -0.081 | -0.178 | 0.143 |
2 | 281.314 | -184.670 | -0.028 | -1.542 | 0.501 |
3 | 700.000 | -165.863 | -0.003 | -1.385 | 0.501 |
4 | 699.596 | -71.432 | 0.046 | -0.903 | 0.758 |
5 | 858.573 | -175.334 | 0.033 | -2.300 | 0.787 |
6 | 1 031.476 | -214.050 | 0.053 | -6.264 | 1.756 |
7 | 802.714 | -224.892 | 0.044 | -6.581 | 1.756 |
8 | 685.197 | -230.257 | 0.039 | -6.738 | 1.756 |
9 | 622.448 | -233.058 | 0.036 | -6.820 | 1.756 |
10 | 93.759 | -254.450 | 0.000 | -7.446 | 1.756 |
11 | 60.000 | -266.488 | -0.035 | -7.799 | 1.756 |
12 | 60.000 | -264.308 | 0.010 | -4.898 | 1.112 |
13 | 60.000 | -264.308 | 0.010 | -0.933 | 0.212 |
14 | 60.000 | -264.308 | 0.010 | -3.965 | 0.900 |
15 | 25.000 | -0.009 | 0.004 | -0.001 | 4.490 |
16 | 570.000 | 16.595 | 0.035 | 1.242 | 4.490 |
17 | 700.000 | 20.835 | 0.040 | 1.559 | 4.490 |
18 | 25.000 | -287.741 | -0.168 | -3.885 | 0.810 |
19 | 91.840 | -282.275 | -0.151 | -3.811 | 0.810 |
20 | 200.000 | -235.893 | -0.029 | -3.185 | 0.810 |
21 | 200.000 | -235.893 | -0.029 | -0.511 | 0.130 |
22 | 200.000 | -235.893 | -0.029 | -2.673 | 0.680 |
23 | 400.000 | -228.660 | -0.017 | -2.591 | 0.680 |
24 | 400.000 | -228.660 | -0.017 | -1.227 | 0.322 |
25 | 400.000 | -228.660 | -0.017 | -1.364 | 0.358 |
26 | 25.000 | -287.741 | -0.168 | -1 594.1 | 332.410 |
27 | 25.780 | -287.678 | -0.168 | -1 593.7 | 332.410 |
28 | 858.573 | 26.084 | 0.044 | 1.871 | 4.304 |
29 | 656.400 | 19.364 | 0.038 | 1.389 | 4.304 |
30 | 95.112 | 2.043 | 0.009 | 0.147 | 4.304 |
31 | 60.000 | 1.015 | 0.006 | 0.073 | 4.304 |
32 | 25.000 | -0.010 | -0.001 | 0.000 | 0.169 |
[1] | 任喜洋, 邓锋, 高兵, 等. 推动能源资源结构向绿色低碳转型[J]. 中国国土资源经济, 2021, 34(12): 48-54,76. |
REN Xiyang, DENG Feng, GAO Bing, et al. Promote the transformation of energy and resource structure to green and low-carbon development[J]. Natural Resource Economics of China, 2021, 34(12): 48-54,76. | |
[2] | 王志峰, 何雅玲, 康重庆, 等. 明确太阳能热发电战略定位促进技术发展[J]. 华电技术, 2021, 43(11): 1-4. |
WANG Zhifeng, HE Yaling, KANG Chongqing, et al. Strategic positioning of solar thermal power generation to promote technological progress[J]. Huadian Technology, 2021, 43(11): 1-4. | |
[3] | 马文会, 于洁, 陈秀华. 固体氧化物燃料电池新型材料[J]. 分析化学, 2014, 42 (11): 1645. |
MA Wenhui, YU Jie, CHENG Xiuhua. New materials for solid oxide fuel cells[J]. Chinese Journal of Analytical Chemistry, 2014, 42 (11): 1645. | |
[4] | 胡小夫, 汪洋, 田立, 等. 中高温SOFC/MGT联合发电技术研究进展[J]. 华电技术, 2019, 41(8): 1-5. |
HU Xiaofu, WANG Yang, TIAN Li, et al. Progress in intermediate and high temperature SOFC/MGT combined power generation technology[J]. Huadian Technology, 2019, 41(8): 1-5. | |
[5] | 刘合, 梁坤, 张国生, 等. 碳达峰、碳中和约束下我国天然气发展策略研究[J]. 中国工程科学, 2021, 23(6):33-42. |
LIU He, LIANG Kun, ZHANG Guosheng, et al. China's natural gas development strategy under the constraints of carbon peak and carbon neutrality[J]. Strategic Study of CAE, 2021, 23(6):33-42. | |
[6] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10): 1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10): 1-10. | |
[7] | 殷建平, 王泽鹏. 我国发展天然气发电产业的战略选择——天然气热电联产与气电调峰比较研究[J]. 价格理论与实践, 2019(11): 11-14. |
YIN Jianping, WANG Zepeng. China's strategic choice for developing natural gas power generation industry—Comparative study on natural gas cogeneration and gas electricity peak shaving[J]. Price:Theory & Practice, 2019(11): 11-14. | |
[8] |
ZENG R, GUO B, ZHANG X, et al. Study on thermodynamic performance of SOFC-CCHP system integrating ORC and double-effect ARC[J]. Energy Conversion and Management, 2021, 242: 114326.
doi: 10.1016/j.enconman.2021.114326 |
[9] | 宋鹏飞, 单彤文, 李又武, 等. 以天然气为原料的燃料电池分布式供能技术路径研究[J]. 现代化工, 2020, 40(9): 14-19. |
SONG Pengfei, SHANG Tongwen, LI Youwu, et al. Founding paths to supply energy in a distributed way by fuel cell with natural gas as raw materials[J]. Modern Chemical Industry, 2020, 40(9): 14-19. | |
[10] | 张尹路, 李文甲, 康利改. 智慧供热在分布式燃气供热中的应用与优化提升[J]. 华电技术, 2020, 42(11): 14-20. |
ZHANG Yinlu, LI Wenjia, KANG Ligai. Application and optimization of intelligent heating in distribute gas heating systems[J]. Huadian Technology, 2020, 42(11): 14-20. | |
[11] | 朱海东, 郝浩, 郑剑, 等. 基于冷热电多能互补的园区综合能源系统设计[J]. 华电技术, 2021, 43(4): 34-38. |
ZHU Haidong, HAO Hao, ZHENG Jian, et al. Design of integrated energy system for parks based on complementation of cold, heat and electricity[J]. Huadian Technology, 2021, 43(4): 34-38. | |
[12] |
ZHANG S, LIU H, LIU M, et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121: 314-324.
doi: 10.1016/j.applthermaleng.2017.04.066 |
[13] |
GHOLAMIAN E, ZARE V. A comparative thermodynamic investigation with environmental analysis of SOFC waste heat to power conversion employing Kalina and Organic Rankine Cycles[J]. Energy Conversion and Management, 2016, 117: 150-161.
doi: 10.1016/j.enconman.2016.03.011 |
[14] |
PENG M Y P, CHEN C, PENG X, et al. Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system[J]. Sustainable Energy Technologies and Assessments, 2020, 39: 100713.
doi: 10.1016/j.seta.2020.100713 |
[15] |
PALOMBA V, FERRARO M, FRAZZICA A, et al. Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications[J]. Applied Energy, 2018, 216: 620-633.
doi: 10.1016/j.apenergy.2018.02.063 |
[16] |
LIU Y, HAN J, YOU H. Performance analysis of a CCHP system based on SOFC/GT/CO2 cycle and ORC with LNG cold energy utilization[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29700-29710.
doi: 10.1016/j.ijhydene.2019.02.201 |
[17] |
PARK S K, AHN J H, KIM T S. Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture[J]. Applied Energy, 2011, 88(9): 2976-2987.
doi: 10.1016/j.apenergy.2011.03.031 |
[18] |
MEHRPOOYA M, SADEGHZADEH M, RAHIMI A, et al. Technical performance analysis of a Combined Cooling Heating and Power (CCHP) system based on Solid Oxide Fuel Cell (SOFC) technology—A building application[J]. Energy Conversion and Management, 2019, 198: 111767.
doi: 10.1016/j.enconman.2019.06.078 |
[19] |
MEHR A S, MOSAYEBNEZHAD M, LANZINI A, et al. Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant[J]. Energy, 2018, 150: 299-309.
doi: 10.1016/j.energy.2018.02.102 |
[20] |
HOU Q, ZHAO H, YANG X. Economic performance study of the integrated MR-SOFC-CCHP system[J]. Energy, 2019, 166: 236-245.
doi: 10.1016/j.energy.2018.10.072 |
[21] | Plus A. 11.1 user guide[J]. Aspen Technology, 2011, 2001. |
[22] |
ZHANG W, CROISET E, DOUGLAS P L, et al. Simulation of a tubular solid oxide fuel cell stack using Aspen PlusTM unit operation models[J]. Energy Conversion and Management, 2005, 46(2): 181-196.
doi: 10.1016/j.enconman.2004.03.002 |
[23] |
SONG T W, SOHN J L, KIM J H, et al. Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model[J]. Journal of Power Sources, 2005, 142(1-2): 30-42.
doi: 10.1016/j.jpowsour.2004.10.011 |
[24] |
BAE Y, LEE S, YOON K J, et al. Three dimensional dynamic modeling and transport analysis of solid oxide fuel cells under electrical load change[J]. Energy Conversion and Management, 2018, 165: 405-418.
doi: 10.1016/j.enconman.2018.03.064 |
[25] |
CHAN S H, KHOR K A, XIA Z T. A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness[J]. Journal of Power Sources, 2001, 93(1-2): 130-140.
doi: 10.1016/S0378-7753(00)00556-5 |
[26] |
MEHR A S, LANZINI A, SANTARELLI M, et al. Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology:System design, fuel types, modeling and analysis approaches[J]. Energy, 2021, 228: 120613.
doi: 10.1016/j.energy.2021.120613 |
[27] |
DANESHPOUR R, MEHRPOOYA M. Design and optimization of a combined solar thermophotovoltaic power generation and solid oxide electrolyser for hydrogen production[J]. Energy Conversion and Management, 2018, 176: 274-286.
doi: 10.1016/j.enconman.2018.09.033 |
[28] |
MEHRPOOYA M, DEHGHANI H, MOOSAVIAN S M A. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system[J]. Journal of Power Sources, 2016, 306: 107-123.
doi: 10.1016/j.jpowsour.2015.11.103 |
[29] |
MEHRPOOYA M, GHORBANI B, JAFARI B, et al. Modeling of a single cell micro proton exchange membrane fuel cell by a new hybrid neural network method[J]. Thermal Science and Engineering Progress, 2018, 7: 8-19.
doi: 10.1016/j.tsep.2018.04.012 |
[30] |
MEHRPOOYA M, AKBARPOUR S, VATANI A, et al. Modeling and optimum design of hybrid solid oxide fuel cell-gas turbine power plants[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21196-21214.
doi: 10.1016/j.ijhydene.2014.10.077 |
[31] |
WEINLAENDER C, ALBERT J, GABER C, et al. Investigation of subsystems for combination into a sofc-based CCHP system[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(2):021003.
doi: 10.1115/1.4041727 |
[1] | YANG Lei, WANG Rui, MA Lili, SUN Ning, LI Xuelian, CHEN Ting, WANG Shaorong, SHI Caixia. Research on Ca and Fe co-doped PrBaCo2O5+δ as a cathode material of solid oxide fuel cells [J]. Integrated Intelligent Energy, 2024, 46(7): 47-52. |
[2] | LIU Yuanyuan, GENG Zhi, ZHANG Yuanfeng, ZHANG Liang, HAN Zhao, ZHANG Bin. Analysis of heat transfer characteristics and thermal-permeability coupling characteristics of single U-tube borehole heat exchangers [J]. Integrated Intelligent Energy, 2023, 45(4): 81-88. |
[3] | QIAO Long, XIE Ligang, XIONG Chen, SONG Nanxin, PU Wenhao. Compressed supercritical carbon dioxide energy storage system coupled with heat pump and thermodynamic analysis [J]. Integrated Intelligent Energy, 2023, 45(12): 53-62. |
[4] | WU Dongye, YANG Di, JIN Xu, HONG Wenpeng, YE Shaoyi, ZHAO Xiaoming. Power flow models and calculation methods applied in integrated energy systems [J]. Integrated Intelligent Energy, 2023, 45(10): 70-81. |
[5] | GAO Yuan, LI Zhi, LI Jiahong, GAO Jiutao, LI Chengxin, LI Changjiu. Progress in technologies of metal-supported solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 1-24. |
[6] | ZHU Shasha, LI Zongbao, DENG Yatian, WANG Xin, JIA Lichao. Application of alloy nanoparticles in the anodes of hydrocarbon solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 33-42. |
[7] | YANG Ying, ZHANG Yanxiang, YAN Mufu. Research progress on preparation methods of medium and low temperature SOFC electrolytes [J]. Integrated Intelligent Energy, 2022, 44(8): 50-57. |
[8] | XU Yangsen, ZHANG Lei, BI Lei. Development and challenges of intermediate-temperature proton-conducting solid oxide fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 68-74. |
[9] | YAN Xueling, PAN Xiang, REN Keke, HUANG Rong, CHENG Jigui, HONG Tao. Preparation and performance study of tubular protonic ceramic fuel cells [J]. Integrated Intelligent Energy, 2022, 44(8): 86-90. |
[10] | PENG Zhanlei, YANG Zhile, YANG Wenqiang, LI Kang. Review on planning and operation methods for power system with participation of electrochemical energy storage systems [J]. Integrated Intelligent Energy, 2022, 44(6): 37-44. |
[11] | Lidong ZHANG, Yibing CHEN, Ming GONG, Hualiang ZHAO, Xin WANG, Hongyan HUANG. Process simulation of factors affecting proton exchange membrane water electrolysis for hydrogen production [J]. Integrated Intelligent Energy, 2022, 44(5): 88-94. |
[12] | WU Linrui, LIU Lu, MENG Yu, LI Yan, HU Nan, XU Hailong, CHEN Meiqi, ZHENG Wukang. Research progress of carbon-based catalyst materials for cathodes of Zn-air batteries [J]. Integrated Intelligent Energy, 2022, 44(4): 65-70. |
[13] | WANG Li, LI Bei, ZHANG Fan, CHEN Jinwei. Temperature control for a SOFC-GT hybrid power system based on gain scheduling model predictive control [J]. Integrated Intelligent Energy, 2022, 44(10): 42-49. |
[14] | JIANG Wenkun, HAN Yinghui, XUE Zhiwen, ZHU Yongqi, XU Yanmei. Energy storage technologies and their applications in multi-energy complementary power system [J]. Integrated Intelligent Energy, 2022, 44(1): 63-71. |
[15] | LAN Jing, ZHU Jizhong, LI Shenglin, SHI Puxin, GUO Wanshu, SHI Peiran, JIANG Changming. Research on electrochemical energy storage to assist new energy consumption and peak load regulation considering carbon penalty [J]. Integrated Intelligent Energy, 2022, 44(1): 9-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||